P-adic Hodge theory

Results: 44



#Item
11Algebraic number theory / Galois theory / Algebraic geometry / Hodge theory / Homological algebra / Tate conjecture / Galois module / tale cohomology / P-adic Hodge theory / Tate module / Abelian variety / Algebraic curve

Lecture Notes on: The Intrinsic Hodge Theory of p-adic Hyperbolic Curves by Shinichi Mochizuki I. General Introduction

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Language: English - Date: 2011-11-07 07:26:20
12Algebraic geometry / Number theory / P-adic Teichmller theory / P-adic number / Riemann surface / P-adic Hodge theory / Nilcurve / Differential geometry of surfaces / Tate conjecture / Algebraic curve / Elliptic curve / tale cohomology

The Intrinsic Hodge Theory of p-adic Hyperbolic Curves by Shinichi Mochizuki §1. Introduction (A.) The Fuchsian Uniformization A hyperbolic curve is an algebraic curve obtained by removing r points from a smooth, proper

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Language: English - Date: 2011-11-07 07:25:30
13Algebraic number theory / Algebraic geometry / Cohomology theories / Homological algebra / Conjectures / Motivic cohomology / tale cohomology / Brauer group / Tate conjecture / Chow group / Motive / P-adic Hodge theory

525 Documenta Math. A p-adic Regulator Map and Finiteness Results for Arithmetic Schemes

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2010-06-21 15:52:39
14Algebraic number theory / Algebraic geometry / Cohomology theories / Homological algebra / Conjectures / Motivic cohomology / tale cohomology / Brauer group / Tate conjecture / Chow group / Motive / P-adic Hodge theory

525 Documenta Math. A p-adic Regulator Map and Finiteness Results for Arithmetic Schemes

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2010-06-21 15:52:39
15Homological algebra / Algebraic number theory / Algebraic geometry / Commutative algebra / Galois theory / P-adic Hodge theory / Crystalline cohomology / Galois module / Valuation / P-adic number / Torsion / Tate module

RAMIFICATION OF CRYSTALLINE REPRESENTATIONS SHIN HATTORI Abstract. This is a survey on integral p-adic Hodge theory, especially on the Fontaine-Laffaille theory, and a ramification bound for crystalline representations

Add to Reading List

Source URL: www2.math.kyushu-u.ac.jp

Language: English - Date: 2014-09-17 00:51:56
16Algebraic number theory / Galois theory / Algebraic geometry / Number theory / Field theory / Shinichi Mochizuki / Anabelian geometry / tale fundamental group / P-adic Hodge theory / Ring / Frobenius endomorphism / Group theory

TOPICS IN ABSOLUTE ANABELIAN GEOMETRY III: GLOBAL RECONSTRUCTION ALGORITHMS Shinichi Mochizuki November 2015 Abstract. In the present paper, which forms the third part of a three-part series

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Language: English - Date: 2015-11-02 21:47:42
17Algebraic structures / Galois theory / Algebraic number theory / Algebraic geometry / Symmetry / Frobenioid / Monoid / Frobenius endomorphism / Homomorphism / Ring / P-adic Hodge theory / Category

THE GEOMETRY OF FROBENIOIDS I: THE GENERAL THEORY Shinichi Mochizuki June 2008

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Language: English - Date: 2011-11-07 07:19:46
18Algebraic geometry / Homological algebra / Number theory / Algebraic surfaces / Analytic number theory / Elliptic curve / Prime number / Abelian variety / P-adic number / Algebraic curve / Motive

The Intrinsic Hodge Theory of p-adic Hyperbolic Curves Shinichi Mochizuki Research Institute for Mathematical Sciences Kyoto University

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Language: English - Date: 2011-11-07 07:26:02
19

Integral p-adic Hodge theory – announcement B. Bhatt, M. Morrow, P. Scholze arXiv:1507.08129v1 [math.AG] 29 Jul

Add to Reading List

Source URL: www.math.uni-bonn.de

Language: English - Date: 2015-08-02 11:37:46
    20

    ERRATUM TO “p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES” PETER SCHOLZE (1) Proposition 3.7 (i) (“Any continuous open surjective map of profinite sets admits a continuous splitting”) is wrong, see [3, Example

    Add to Reading List

    Source URL: www.math.uni-bonn.de

    Language: English - Date: 2016-02-09 04:04:13
      UPDATE